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On Calculating Analytic Centers

A. A. Goldstein*

This note was motivated by papers of Renegar and Shub(88) and by Ye(89). We apply

Smale's(86) estimates at one point for Newton's method to the problem of finding the

analytic center of a polytope. The method converges globally in the appropriate norm.

The ideas are then applied to obtain a possible benchmark for path following methods.

When Smale's method is tractable its power stems not only from the fact that the in-

formation is concentrated at one point. There are 2 norms to estimate, not 3 as in the

Kantorovich estimate. Moreover no estimate of the inverse of the derivative operator by

itself is needed. The need for the norm of the inverse by itself often makes for coarse

estimates.

1. Setting

Let A denote an m by n orthonormal matrix of rank n and b an m by 1 matrix.

We assume that m > n. Denote by e a m by 1 matrix whose components are all ones.

Transposes of matrices will be denoted by an asterisk, rows of a matrix by superscripts,

and columns by subscripts. The euclidean space of real m-tuples will be denoted by Em .

If u E Em we mean by diag(u) the diagonal matrix with entries u tt . The dot product

corresponding to the usual norm will be denoted by
, ]. The usual norm will be written

as
||

||2. En will be also be renormed under a dot product that will be denoted by < , >.

The norm arising from this dot product will be written as
||

||. Let P be a polytope with

non-empty interior given by the inequalities

b - Ax > 0.

Given Xq in the interior of P and e > 0, we seek the analytic center £ of P to within a

tolerance of e. Let Rt(x) = b
l
— A lx .

Claim 1. Let N be the smallest integer exceeding

log2 (4.95m 4 maxR t (x )) + log2
(

-
1 + log 2

Then if N steps of the Newton sequence are generated using the gradient of the potential

function below
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||* JV - CII2 < e

The proof of the claim depends on the following ingredients.

2. Some ingredients.

The potential of P is defined by the expression

?r(P) =mai] [R t
(x) :x £ P}

1 = ]

The maximum is achieved at an unique point called the analytic center of P. (Ye 87 ).

We shall find this point by seeking a zero for the gradient of the logarithmic potential

4>(x) = Y/
^g(R

l
(x)

i=i

Let D(x) = diag(l/Ri(x)), thus D tl {x) = 1/Ri(x).

We apply Newton's method to the gradient of
(f>
which we denote by F. F(x) may be

represented by the matrix A*D(x)e, and F(x) G En . The kth Frechet differential of F at

x can be identified with a multi-linear mapping from (E^j) k to En . A representation of

these differentials as matrices follows.

F'(a-)/ii = -A*D2 (x)diag(Ah 1 )e = -A*D(x)D(x)Ah 1

F"(x,hu h 2 ) = -2\A*D{x)D 2
{x) diag(Ah2 ) Ah x

F'"{x,hu h2M) = -3\A*D{x)D 3 (x)diag(Ah 3 )diag{Ah 2 )Ah 1

and

F(k)
(x

y
hu h2 ,...,hk ) = -k\A* D{x)D k

{x) diag{Ah k ), ..., diag{Ah 2 )Ah 1

= -k\A*D(x)Q(x,h u ...,h k )

Here

||Q(.r)|| 2 = sup{\\Q(x,hu -,hk)h : INI2 = IMk =, -,= \\hkh = 1} < 1



Theorem 1. (SmaJe 86 ) Assume F is an analytic map between real Banach spaces X and

Y, that is the Frechet derivatives F^ k\x) exist for all x € X and k=l,2,3, Given x G

X, assume that the inverse of F'(x) which we denote by F'_
1
(x) exists. Set

f3(x ) = \\F'_
1
(x )F(x )\\ and

7(*o) = supi
[

\\^F'_
1
(xo)F^(xo)\\^ : k >

2

J

If

P(xo)f(x ) < .130707

then xo is an approximate root of F. That is, the Newton sequence

Xk+i = Xk - F'_
1
(xk)F(x k )

is well defined and {x^} converges to say £, a root of F at the rate:

Moreover

11**- £11 <
7

-(\f'
l

f3(x )
(A)

3. Proof of Claim 1.

Assume x is given in P(M). The matrix

P(x )
= D(x )A(A*D(x )D(x )A)- 1 A*D(x

)

maps each point in Em to its closest point in the range of the matrix D{xq)A . Hence

||P(a-o)|| 2 = 1. Werenorm En by

11*11 = \\DcAx\\ 2

Here Dq — CD(x G ) with C = 1/S^m^ . With this definition we get:

P(x ) = C\\P(x )e\\ 2 = m*/si

Also

1(xo)<Csup(\\P(x )\\^
T )sup(\\Q

kAh 1 \\^) < C

Thus [3{x )~f{x ) < - < .130707
8



Hence by Smale's theorem the sequence generated by the Newton algorithm converges to

the analytical center £ with a rate given by (A) in Theorem 3.1 above.

Since < x, x >— [DcAx, DqAx] > C2
\\x\\\ /max

R

x
(x

)

2
, then

||x|| 2 < CRi{x Q )\\x\\

Now choose N so that

CRi(xQ )\\xN -Z\\ < e

4. Application to programming

By a theorem of Ye (89), if one of the hyperplanes of P is translated to pass thru £ then

the resulting polytope P+ satisfies

tt(P+
)

1— < -
tt(P) - e

Consider the following algorithm for linear inequalities. We wish to solve the system

b — Ax > if this is possible. Given an arbitrary xq choose M so that b -f M — Ax > 0.

Find the center of this polytope P(M). Take the smallest component of .R(£), say R
q d)-

Begin anew with the polytope P(M — R
q (£)). This algorithm has a worst case iteration

count of 0(777.) times our cost of getting to the center.

For linear programming let the polytope P be given by b - Ax > and P(M) the polytope

define by the inequalities for P together with the inequality M - [c , x] > 0. We seek the

smallest M for which P(M) is non-empty. We first find the center £ of the polytope P.

We then find the intersection of the ray {x = £ — tc : t > 0} with P Translate the cost

hyperplane to pass thru this point. Then find the center of the new polytope P(M).

5. Benchmark

We now consider the possibility of starting from a point in a polytope P(M) and moving

to the center of a neighboring polytope P(M — l/2y/m) by Newton steps.

Assume that at (x , M ), Ri(x, M) — b
t + M — A % x > 0. We seek a point (x 1: Mi) such

that

= 0, 1 <j < n (la)
a<A(x,M)

dx
}

d<Kx,M) ^(n.MQ . MM~M m— =
°

{lb)

5



and such that

Riibi + Mi - A x

x x ) > (2)

Let Mi = M — l/2y/m. Assume that the value of X\ is well defined and given. Otherwise

P(Mi) is empty and Mq is within l/2y/m of M* the optimal value of M. We show that

(aro,Mo) is an "approximate root" for system (I).

Remark The matrix (A e) has rank n+1.

Proof Because of our boundedness assumption on the polytopes, the system of inequalities

Ax > is inconsistent. If u is in the null space of (A e) then Au = -un+ ie ^ 0, a

contradiction.

In matrix notation the system (1) (after scaling the second entry) is

-A*D{x,M)e -^=e*(D(x,M)e-D(xuM1 )e)

Thus we see that - F'(x, M) may be generated from the matrix

— g
B = (A1 ,A2 ,...,An,An+1 ) where An+1 =

2y/m

Assume that (A\, A2, ..., An ) is rescaled if necessary so that ||J5|| < 1. By the Remark we

see that B has rank n+1. Thus Claim 1 holds for this case as well. If we are satisfied with

a reduction of 1/3-^/m this will happen in N steps by the claim with e set to l/6>/m. We
have then the following result: (not an algorithm but a benchmark)

Claim 2. We are given a point (xjt,Mjfc),. Let Mk+i — M* - l/2 v/m. If P(Mk+i) is

not empty, take £jt+i for its center. Let the system (I) be run with Newtons' method.

Otherwise, stop. In N steps M* will be reduced by at least l/3>/m. This value updates

Mk+i and the corresponding iterate for x updates xjt+i- Assume the optimal M say M*
known. Then the global Newton process can be terminated in no more than Q steps, where

Q> 3^i(M -M*)(l + log
2

log
2 (4.95m 4 maii?,(xo)) + log2 (

6\/m



At termination M/v is within l/2y/m of M* and x ^ is an approximate root for system (I)

with M* replacing M\ and £ replacing x\, respectively.

A similar result holds for linear programming.
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